Oxidative stress-induced degradation of thioredoxin-1 and apoptosis is inhibited by thioredoxin-1-actin interaction in endothelial cells.
نویسندگان
چکیده
OBJECTIVE Thioredoxin-1 (Trx-1), one important antioxidative enzyme in endothelial cells, is required for apoptosis inhibition. Apoptosis induction is dependent on cytoskeletal changes, which depend on actin rearrangements. Therefore, we wanted to elucidate whether a physical interaction exists between Trx-1 and actin and what the functional consequences are. METHODS AND RESULTS Combined immunoprecipitation/mass spectrometry identified actin as a new binding partner for Trx-1. A separate pool of Trx-1 forms a complex with apoptosis signaling kinase 1. Actin is required for stress fiber formation; thus, the interaction of actin with Trx-1 might interfere with this process. Stress fiber formation, which is directly linked to the phosphorylation of focal adhesion kinase (FAK), occurs as early as 1 hour after H(2)O(2) treatment. It is inhibited by Trx-1 overexpression, treatment with exogenous Trx-1, or inhibition of FAK. Prolonged incubation with H(2)O(2) induced stress fiber formation, reduced Trx-1 protein levels, and increased apoptosis. All these processes were inhibited by preincubation with the FAK inhibitor PF573228. On the contrary, incubation with PF573228 1 hour after H(2)O(2) treatment did not block stress fiber formation, degradation of Trx-1, or apoptosis. CONCLUSIONS These data demonstrate that the actin-Trx-1 complex protects Trx-1 from degradation and, thus, endothelial cells from apoptosis. Reciprocally, Trx-1 prevents stress fiber formation.
منابع مشابه
Redox systems of the cell: possible links and implications.
O status (redox) is an important regulator of various metabolic functions of the cell. Perturbations in the redox status of cells by external or internal stimuli elicit distinct responses, resulting in alteration of cell function. Glutathione and thioredoxin are two major reducing systems of the eukaryotic cell that maintain redox balance, as well as interact with various transducer and effecto...
متن کاملProtective Effects of Peroxiredoxin on Hydrogen Peroxide Induced Oxidative Stress and Apoptosis in Cardiomyocytes
BACKGROUND AND OBJECTIVES The redox system is an important anti-oxidative system composed of thioredoxin, thioredoxin reductase, and peroxiredoxin (PRx). The fine details of PRx expression and its protective effects in various cells in cardiovascular tissue under oxidative stress created by hydrogen peroxide have not been fully elucidated. SUBJECTS AND METHODS Oxidative stress was induced by ...
متن کاملRecombinant Human Thioredoxin-1 Protects Macrophages from Oxidized Low-Density Lipoprotein-Induced Foam Cell Formation and Cell Apoptosis
Oxidized low-density lipoprotein (ox-LDL)-induced macrophage foam cell formation and apoptosis play critical roles in the pathogenesis of atherosclerosis. Thioredoxin-1 (Trx) is an antioxidant that potently protects various cells from oxidative stress-induced cell death. However, the protective effect of Trx on ox-LDL-induced macrophage foam cell formation and apoptosis has not been studied. Th...
متن کاملSuberoylanilide hydroxamic acid-induced HeLa cell death is closely correlated with oxidative stress and thioredoxin 1 levels.
Suberoylanilide hydroxamic acid (SAHA) is a histone deacetylase (HDAC) inhibitor which has anticancer effects. We evaluated the growth inhibitory effects of SAHA on HeLa cervical cancer cells in relation to reactive oxygen species (ROS) levels. SAHA inhibited the growth of HeLa cells with an IC(50) of approximately 10 µM at 24 h, and induced apoptosis which was accompanied by the cleavage of PA...
متن کاملEpalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells
Epalrestat (EPS) is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH) in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 31 3 شماره
صفحات -
تاریخ انتشار 2011